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Initial formation of two acetoxyl radicals has long been consider- 

ed the exclusive path for thermal dissociation of acetyl peroxide. 
(la,b, 

c) Often used as a model for related systems, this hypothesis rests on 

suprisingly fragile evidence. Only two of the many reports 
(2,3,4a,Sa, 

6a, 7a) 
of successful acetoxyl trapping, under conditions where induced 

decomposition was believed absent, have survived subsequent discover- 

ies Mb, 5b ,6b, 7b) and even these(2 ‘3) need not implicate more than a 

small fraction of reactant molecules. 

The problems of quantitive scavenging are indeed formidable and so 

we have measured, instead, the intermolecular carbon and oxygen kinetic 

isotope effects. Abundances of C 
13 

and 018 in C02, isolated and puri- 
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1602 Multicenter cleavage of acetyl peroxide No.24 

fied after partial reaction, were compared with those identically obtain- 

ed from complete decompositions and provide the experimental values list- 

ed in Table 1. The technique is insensitive to isotopic discrimination in 

any step following the rate-controlling one, identified with O-O cleavage 

by virtue of previous oxygen labeling experiments. 
(W 

TABLE 1 

Correcteda Isotopic Ratios and Isotope Effects Isooctane, 

0.096h4, 44.8’ 

fb lo5xc13/d2 lo5xo18016/021~ 
k12’k13 k16’k18 

0.020 1073 404 1.023 1.026 

0.039 1072 407 1.024 1.017 

0.039 1069 402 1.027 1.031 

o.03gc 1075 408 1.021 1.016 

0.059 1076 1.020 

0.99 1097Hd 414fld 

mean: 

aAs in ref. 8. 
b 

Calculated from data reported in ref. 9. ‘Contain- 
ed 0.60 M &-methyl styrene. dMean and standard deviation of four 
runs at 67, 75’, and 85’. 

Should no other covalent bonds be altered in the transition state, 

application of the 8 technique (8 r 10) leads to a predicted oxygen isotope 

effect of 1.027, in good agreement with experiment, and a carbon isotope 

effect of 1.004 which clearly is not. 
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Exact calculation of ratios of (almost) complete partition 

functions(l’ ’ 12) permits greater rigor and more versatile models. Essential 

ground state input parameters (force constants, bond distances and angles) 

are taken from related molecules. Those for the transition state are ad- 

justed, within the limits of any one mechanism, until experimental values 

are duplicated. Table 2 illustrates the futiiity of such attempts for one- 

center cleavage. A and B represent outer limits of a reasonable a uriori 

description of such a transition state .C demonstrates the cost of repro- 

ducing the carbon isotope effect: an unrealistic model and disagreement 

with the oxygen value. 

TABLE 2 

Predicted Isotope Effects for One-Center Transition States 

Ground 
State 

Yansition 
Nate A 

B 

C 

Stretching Force 
Constants (mdyr& 

o-o c-o c=o 
m-- 

4.0 5.4 10.5 

0 5.4 10.5 

0 7.95 7.9 

0 5.4 5.4 

k12’k13 

1.003 

1.002 

1.022 

_ 

k16’kl13 
-c_o 

1 .OSl. 1.004 1.027 

1.037 1.016 1.026 

1.051 1.031 1.041 

Similar evaluation of concerted, three-center cleavage first requires 

an operational definition: a smaller increase in potential energy results 

from simultaneous extension of O-O and C-C bonds than would be required 

by equal, but successive, extensions. More concisely, two identical and 
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negative off-diagonal elements are introduced into an (otherwise diagonal) 

_F matrix. If these now be chosen by: 

where Fii and Fjj are C-C and O-O stretching force constants, one vibra- 

tional mode becomes unrestrained and a transition state is formed (131 , 

irrespective of the magnitudes of any diagonal elements (14) . Fig. 1 

shows the agreement between experimental and computed results for 

X = 0. SOiO. 07 where X is the single parameter by which all ground state 

force constants, incorporating O-O or C-C bonds, are to be multiplied in 

the transition state. 

The possibility of still smaller X, whose effect is diminished by con- 

current one- and/or two-center (15) cleavage, cannot be excluded. Our 

yield of CO2 (83f2%) does suggest its formation by multiple paths but we 

consider radical-induced decomposition, known to be present under these 

conditions, (16) a more reasonable choice for the minor route. If so, the 

experimental isotope effects underestimate the true magnitudes of the 

unimolecular ones and our conclusion is strengthened: C-C cleavage must 

accompany O-O cleavage of acetyl peroxide to a predominant, if not 

exclusive, extent. 
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